- Title
- Rank-two graphs whose C*-algebras are direct limits of circle algebras
- Creator
- Pask, David; Raeburn, Iain; Rørdam, Mikael; Sims, Aidan
- Relation
- Journal of Functional Analysis Vol. 239, Issue 1, p. 137-178
- Publisher Link
- http://dx.doi.org/10.1016/j.jfa.2006.04.003
- Publisher
- Elsevier
- Resource Type
- journal article
- Date
- 2006
- Description
- We describe a class of rank-2 graphs whose C*-algebras are AT algebras. For a subclass which we call rank-2 Bratteli diagrams, we compute the K-theory of the C*-algebra.We identify rank-2 Bratteli diagrams whose C*-algebras are simple and have real-rank zero, and characterise the K-invariants achieved by such algebras. We give examples of rank-2 Bratteli diagrams whose C*-algebras contain as full corners the irrational rotation algebras and the Bunce–Deddens algebras.
- Subject
- AT algebra; real-rank zero; graph algebra; k-Graph; C*-Algebra
- Identifier
- uon:6394
- Identifier
- http://hdl.handle.net/1959.13/803406
- Identifier
- ISSN:1096-0783
- Reviewed
- Hits: 2782
- Visitors: 3175
- Downloads: 4
Thumbnail | File | Description | Size | Format |
---|